Calculate the magnitude of the net electric field at the origin due to these two point charges.?3) A point charge q1=-4.00nC is at the point x=0.60m, y=0.80m , and a second point charge q2=+6.00nC is at the point x=0.60m , y=0. A) Calculate the magnitude of the net electric field at the origin due to these two point charges.B) Calculate the direction of the net electric field at the origin due to these two point charges. (clockwise from +-x axis)

Respuesta :

Answer:

[tex]121.6\ \text{N/C}[/tex]

[tex]167.36^{\circ}[/tex]

Explanation:

[tex]q_1=-4\ \text{nC}\ \text{at }(0.6,0.8)[/tex]

[tex]q_2=6\ \text{nC}\ \text{at }(0.6,0)[/tex]

[tex]r_1[/tex] = Distance of [tex]q_1[/tex] from origin = [tex]\sqrt{0.6^2+0.8^2}[/tex]

[tex]r_2[/tex] = Distance of [tex]q_2[/tex] from origin = [tex]0.6[/tex]

k = Coulomb constant = [tex]9\times 10^9\ \text{Nm}^2/\text{C}^2[/tex]

Electric field is given by

[tex]E_1=\dfrac{kq_1}{r_1^2}\\\Rightarrow E_1=\dfrac{9\times 10^9\times 4\times 10^{-9}}{\sqrt{0.6^2+0.8^2}}\\\Rightarrow E_1=36\ \text{N/C}[/tex]

[tex]\theta=\tan^{-1}\dfrac{0.8}{0.6}\\\Rightarrow\theta=53.13^{\circ}[/tex]

[tex]E_1=36\cos53.13^{\circ}\hat{i}+36\sin53.13^{\circ}\hat{j}\\\Rightarrow E_1=21.6\hat{i}+28.8\hat{j}[/tex]

[tex]E_2=\dfrac{kq_2}{r_2^2}\\\Rightarrow E_2=\dfrac{9\times 10^9\times 6\times 10^{-9}}{0.6^2}\\\Rightarrow E_2=150\ \text{N/C}[/tex]

The charge [tex]q_2[/tex] is on the x axis itself and it is pointing towards the origin (left side) so the sign will be negative

[tex]E_2=-150\hat{i}[/tex]

Resultant electric field

[tex]E=E_1+E_2\\\Rightarrow E=21.6\hat{i}+28.8\hat{j}+(-150\hat{i})\\\Rightarrow E=-128.4\hat{i}+28.8\hat{j}[/tex]

Magnitude of electric field is given by

[tex]|E|=\sqrt{(-128.4)^2+28.8^2}\\\Rightarrow |E|=121.6\ \text{N/C}[/tex]

Magnitude of the net electric field is [tex]121.6\ \text{N/C}[/tex]

Direction is given by

[tex]\theta=\tan^{-1}\dfrac{128.4}{28.8}=77.36^{\circ}[/tex]

From the -x axis

[tex](90+77.36)^{\circ}=167.36^{\circ}[/tex]

The direction of the net magnetic field is [tex]167.36^{\circ}[/tex]