A weight is attached to the end of a spring. Its height after t seconds is given by the equation.
-2sin(2pi(t+1)/7)+5
When does the weight first reach its maximum height? Answer in t seconds.

Respuesta :

Answer:

Step-by-step explanation:

[tex]y=-2sin (\frac{2\pi (t+1)} {7})+5\\Height ~is~maximum~\\if sin (\frac{2\pi (t+1)}{7} )=-1\\or~ \frac{2\pi (t+1)}{7} =\frac{3 \pi }{2} \\t+1=\frac{3\pi }{2} \times \frac{7}{2\pi } =\frac{21}{4} \\t=\frac{21}{4} -1=\frac{17}{4} =4.25 ~seconds.[/tex]

The weight reaches its maximum height at 4.25 seconds.

What is maximum height?

'The maximum height of the object is the highest vertical position along its trajectory.'

According to the given problem,

y = -2sin ([tex]\frac{2\pi ( t + 1 )}{7}[/tex]) + 5

For maximum height,

  sin ([tex]\frac{2\pi ( t + 1 )}{7}[/tex]) = -1

⇒ [tex]\frac{2\pi ( t + 1 )}{7}[/tex] = [tex]sin^{-1} (-1)[/tex]

⇒  [tex]\frac{2\pi ( t + 1 )}{7}[/tex] = [tex]\frac{3\pi }{2}[/tex]

⇒ [tex]t +1=\frac{7 * 3\pi }{2 *2\pi }[/tex]

⇒ [tex]t +1[/tex] = [tex]\frac{21}{4}[/tex]

⇒ [tex]t = \frac{21}{4} -1[/tex]

⇒ t = [tex]\frac{17}{4}[/tex]

⇒ t = [tex]4.25[/tex] seconds.

Hence, we can conclude that at t = 4.25 seconds, the weight reaches its maximum height.

Learn more about maximum height here: https://brainly.com/question/6261898

#SPJ2