The initial size of the population is 300. After 1 day the population has grown to 800. Estimate the population after 6 days. (Round your answer to the nearest whole number.)

Respuesta :

Solution :

Given initial population = 300

Final population after 1 day = 800

Number of days = 6

∴ [tex]$\frac{dP}{dt} =kt^{1/2} $[/tex]

P(0) = 300    P(1) = 300

We need to find P(8).

[tex]$dP = kt^{1/2} dt$[/tex]

[tex]$ \int 1 dP = \int kt^{1/2} dt$[/tex]

[tex]$P(t) = k \left(\frac{t^{3/2}}{3/2}\right)+c$[/tex]

[tex]$P(t)= \frac{2k}{3}t^{3/2} + c$[/tex]

When P(0) = 300

[tex]$300 = \frac{2k}{3} (0)^{3/2} + c$[/tex]

∴ c = 300

∴ [tex]$P(t)= \frac{2k}{3}t^{3/2} + 300$[/tex]

When P(1) = 800

[tex]$800 = \frac{2k}{3} (1)^{3/2} + 300$[/tex]

[tex]$500 = \frac{2k}{3}$[/tex]

∴ k = 750

[tex]$P(t)= 500t^{3/2} + 300$[/tex]

So, P(8) is

[tex]$P(t)= 500(8)^{3/2} + 300$[/tex]

        = 11,614

So the population becomes 11,614 after 8 days.