Let X be the amount of time (in minutes) a USPS clerk spends with a customer. It is known that X follows an exponential distribution and USPS clerks take care of 38.1 percent of customers less than two minutes. Find P(0.5 < X < 3).

Respuesta :

Answer: 0.4

Step-by-step explanation:

Given: Cumulative exponential distribution:

[tex]P(x<k)=1-e^{\frac{-x}{k}}[/tex]

As per given,

[tex]P(x<2)=1-e^{\frac{-2}{k}}=0.381\\\\\Rightarrow\ e^{\frac{-2}{k}}=1-0.381\\\\\Rightarrow\ e^{\frac{-2}{k}}=0.619\\\\\Rightarrow\ {\frac{-2}{k}}=\ln(0.619) \ \ \ [\text{Taking natural log on both sides }]\\\\\Rightarrow\ {\frac{-2}{k}}=-0.47965\\\\\Rightarrow\ k=\dfrac{2}{0.47965}\\\\\Rightarrow\ k=4.17[/tex]

[tex]P(0.5 < X < 3) \\\\=P(X<3)-P(X<0.5) \\\\=(1-e^{-\frac{3}{4.17}})-(1-e^{-\frac{0.5}{4.17}}) \\\\=e^{-\frac{0.5}{4.17}}-e^{-\frac{3}{4.17}}\\\\= 0.4[/tex]

Hence, the required probability = 0.4