Respuesta :

Hope this helps you with implicit differentiations
Ver imagen Аноним
Space

Answer:

[tex]y''(-1) =8[/tex]

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

Algebra I

  • Factoring

Calculus

Implicit Differentiation

The derivative of a constant is equal to 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule: [tex]\frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)[/tex]

Chain Rule: [tex]\frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)[/tex]

Quotient Rule: [tex]\frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}[/tex]

Step-by-step explanation:

Step 1: Define

-xy - 2y = -4

Rate of change of the tangent line at point (-1, 4)

Step 2: Differentiate Pt. 1

Find 1st Derivative

  1. Implicit Differentiation [Product Rule/Basic Power Rule]:                            [tex]-y - xy' - 2y' = 0[/tex]
  2. [Algebra] Isolate y' terms:                                                                               [tex]-xy' - 2y' = y[/tex]
  3. [Algebra] Factor y':                                                                                       [tex]y'(-x - 2) = y[/tex]
  4. [Algebra] Isolate y':                                                                                         [tex]y' = \frac{y}{-x-2}[/tex]
  5. [Algebra] Rewrite:                                                                                           [tex]y' = \frac{-y}{x+2}[/tex]

Step 3: Find y

  1. Define equation:                    [tex]-xy - 2y = -4[/tex]
  2. Factor y:                                 [tex]y(-x - 2) = -4[/tex]
  3. Isolate y:                                 [tex]y = \frac{-4}{-x-2}[/tex]
  4. Simplify:                                 [tex]y = \frac{4}{x+2}[/tex]

Step 4: Rewrite 1st Derivative

  1. [Algebra] Substitute in y:                                                                               [tex]y' = \frac{-\frac{4}{x+2} }{x+2}[/tex]
  2. [Algebra] Simplify:                                                                                         [tex]y' = \frac{-4}{(x+2)^2}[/tex]

Step 5: Differentiate Pt. 2

Find 2nd Derivative

  1. Differentiate [Quotient Rule/Basic Power Rule]:                                          [tex]y'' = \frac{0(x+2)^2 - 8 \cdot 2(x + 2) \cdot 1}{[(x + 2)^2]^2}[/tex]
  2. [Derivative] Simplify:                                                                                      [tex]y'' = \frac{8}{(x+2)^3}[/tex]

Step 6: Find Slope at Given Point

  1. [Algebra] Substitute in x:                                                                               [tex]y''(-1) = \frac{8}{(-1+2)^3}[/tex]
  2. [Algebra] Evaluate:                                                                                       [tex]y''(-1) =8[/tex]