Respuesta :

Note: Your question sounds a little unclear, but I am assuming that your system of equations is:

[tex]x-\frac{2}{3}y=8[/tex]

[tex]-\frac{1}{5}x+\frac{1}{3}y\:=\:3[/tex]

It would anyways clear your concept because the procedure to find the solutions remains the same for any set of a system of equations.

Answer:

The solution of the system of equations be:

[tex]x=\frac{70}{3},\:y=23[/tex]

Step-by-step explanation:

Given the system of equations

[tex]\begin{bmatrix}x-\frac{2}{3}y=8\\ -\frac{1}{5}x+\frac{1}{3}y=3\end{bmatrix}[/tex]

[tex]\mathrm{Multiply\:}-\frac{1}{5}x+\frac{1}{3}y=3\mathrm{\:by\:}5\:\mathrm{:}\:\quad \:-x+\frac{5}{3}y=15[/tex]

[tex]\begin{bmatrix}x-\frac{2}{3}y=8\\ -x+\frac{5}{3}y=15\end{bmatrix}[/tex]

so adding the equation

[tex]-x+\frac{5}{3}y=15[/tex]

[tex]+[/tex]

[tex]\underline{x-\frac{2}{3}y=8}[/tex]

[tex]y=23[/tex]

so the system equations become

[tex]\begin{bmatrix}x-\frac{2}{3}y=8\\ y=23\end{bmatrix}[/tex]

[tex]\mathrm{For\:}x-\frac{2}{3}y=8\mathrm{\:plug\:in\:}y=23[/tex]

[tex]x-\frac{2}{3}\cdot \:23=8[/tex]

[tex]x-\frac{46}{3}=8[/tex]

Add 46/3 to both sides

[tex]x-\frac{46}{3}+\frac{46}{3}=8+\frac{46}{3}[/tex]

[tex]x=\frac{70}{3}[/tex]

Therefore, the solution of the system of equations be:

[tex]x=\frac{70}{3},\:y=23[/tex]