Respuesta :

Answer:

[tex]2ax^2+4axy+3bx^2+2ay^2+6bxy+3by^2= (x+y)^2(2a+3b)[/tex]

Explanation:

Given

[tex]2ax^2+4axy+3bx^2+2ay^2+6bxy+3by^2[/tex]

Required

Factorize

[tex]2ax^2+4axy+3bx^2+2ay^2+6bxy+3by^2[/tex]

Rewrite as:

[tex]2ax^2+4axy+2ay^2+3bx^2+6bxy+3by^2[/tex]

Use square parenthesis

[tex][2ax^2+4axy+2ay^2]+[3bx^2+6bxy+3by^2][/tex]

Expand each bracket

[tex][2ax^2+2axy+2axy+2ay^2]+[3bx^2+3bxy+3bxy+3by^2][/tex]

Factorize each:

[tex][2ax(x+y) + 2ay(x+y)]+[3bx(x+y)+3by(x+y)][/tex]

[tex][(2ax+2ay)(x+y)]+[(3bx+3by)(x+y)][/tex]

Further, factorize:

[tex](x+y)[(2ax+2ay)]+[(3bx+3by)][/tex]

[tex](x+y)[(2ax+2ay)+(3bx+3by)][/tex]

Remove bracket

[tex](x+y)[2ax+2ay+3bx+3by][/tex]

Reorder:

[tex](x+y)[2ax+3bx+2ay+3by][/tex]

Factorize:

[tex](x+y)[x(2a+3b)+y(2a+3b)][/tex]

[tex](x+y)[(x+y)(2a+3b)][/tex]

Remove square bracket

[tex](x+y)(x+y)(2a+3b)[/tex]

This gives:

[tex](x+y)^2(2a+3b)[/tex]

Hence:

[tex]2ax^2+4axy+3bx^2+2ay^2+6bxy+3by^2= (x+y)^2(2a+3b)[/tex]