Respuesta :

Answer:

[tex]3B - 4C = \left[\begin{array}{cc}-8 &-23\\1&-15\end{array}\right][/tex]

Explanation:

Given

[tex]B = \left[\begin{array}{cc}8&-5\\-1&3\end{array}\right][/tex]

[tex]C = \left[\begin{array}{cc}8&2\\-1&6\end{array}\right][/tex]

Required

Determine 3B - 4C

If

[tex]B = \left[\begin{array}{cc}8&-5\\-1&3\end{array}\right][/tex]

Then

[tex]3B = 3 * \left[\begin{array}{cc}8&-5\\-1&3\end{array}\right][/tex]

[tex]3B = \left[\begin{array}{cc}24&-15\\-3&9\end{array}\right][/tex]

Similarly,

If

[tex]C = \left[\begin{array}{cc}8&2\\-1&6\end{array}\right][/tex]

Then

[tex]4C = 4 * \left[\begin{array}{cc}8&2\\-1&6\end{array}\right][/tex]

[tex]4C = \left[\begin{array}{cc}32&8\\-4&24\end{array}\right][/tex]

So:

[tex]3B - 4C = \left[\begin{array}{cc}24&-15\\-3&9\end{array}\right] - \left[\begin{array}{cc}32&8\\-4&24\end{array}\right][/tex]

This gives:

[tex]3B - 4C = \left[\begin{array}{cc}24 - 32 &-15-8\\-3-(-4)&9-24\end{array}\right][/tex]

[tex]3B - 4C = \left[\begin{array}{cc}-8 &-23\\1&-15\end{array}\right][/tex]