Respuesta :
Answer:
Options A C D
Step-by-step explanation:
doing the edge 2020 assignment right now
The correct answer are option (A) , (B), (C) and (D)
[tex]f(x) = 5(\sqrt[3]{16} )^x[/tex]
[tex]f(x) = 2.3(8)^\frac{1}{2}[/tex]
[tex]f(x) = 81^\frac{x}{4}[/tex]
[tex]f(x) = \dfrac{3}{4} (\sqrt{27} )^x[/tex]
What are Arithmetic operations?
Arithmetic operations can also be specified by the subtract, divide, and multiply built-in functions.
The operator that perform arithmetic operation are called arithmetic operators .
Operators which let do basic mathematical calculation
+ Addition operation : Adds values on either side of the operator.
For example 4 + 2 = 6
- Subtraction operation : Subtracts right hand operand from left hand operand.
for example 4 -2 = 2
* Multiplication operation : Multiplies values on either side of the operator
For example 4*2 = 8
/ Division operation : Divides left hand operand by right hand operand
For example 4/2 = 2
Given exponential functions :
[tex]f(x) = 5(\sqrt[3]{16} )^x[/tex]
[tex]f(x) = 2.3(8)^\frac{1}{2}[/tex]
[tex]f(x) = 81^\frac{x}{4}[/tex]
[tex]f(x) = \dfrac{3}{4} (\sqrt{27} )^x[/tex]
[tex]f(x) = (24)^\frac{1}{3}^x[/tex]
Simplification of the given exponential functions :
[tex]f(x) = 5(\sqrt[3]{16} )^x = 5(\sqrt[3]{2^3\times2} )^x = 5(2\sqrt[3]{2} )^x[/tex]
[tex]f(x) = 2.3(8)^\frac{1}{2} = 2.3(2^3)^\frac{1}{2}^x = 2.3.2(2)^\frac{1}{2}^x = 24.(2)^\frac{1}{2}^x[/tex]
[tex]f(x) = 81^\frac{x}{4} = f(x) = (3^4)^\frac{x}{4} = 3^x[/tex]
[tex]f(x) = \dfrac{3}{4} (\sqrt{27} )^x = \dfrac{3}{4} (\sqrt{3^3} )^x = \dfrac{3}{4} 3^x[/tex]
[tex]f(x) = (24)^\frac{1}{3}^x = 2(2)^\frac{1}{3}^x[/tex]
Hence, the correct answer are option (A) , (B), (C) and (D)
[tex]f(x) = 5(\sqrt[3]{16} )^x[/tex]
[tex]f(x) = 2.3(8)^\frac{1}{2}[/tex]
[tex]f(x) = 81^\frac{x}{4}[/tex]
[tex]f(x) = \dfrac{3}{4} (\sqrt{27} )^x[/tex]
Learn more about Arithmetic operations here:
brainly.com/question/25834626
#SPJ5