The angle of elevation from me to the top of a hill is 51 degrees. The angle of elevation from me to the top of a tree is 57 degrees. The tree stands 20 ft off the hill. How high is the top of the tree from the base of the hill?

Respuesta :

Answer:

Approximately [tex]101\; \rm ft[/tex] (assuming that the height of the base of the hill is the same as that of the observer.)

Step-by-step explanation:

Refer to the diagram attached.

  • Let [tex]\rm O[/tex] denote the observer.
  • Let [tex]\rm A[/tex] denote the top of the tree.
  • Let [tex]\rm R[/tex] denote the base of the tree.
  • Let [tex]\rm B[/tex] denote the point where line [tex]\rm AR[/tex] (a vertical line) and the horizontal line going through [tex]\rm O[/tex] meets. [tex]\angle \rm B\hat{A}R = 90^\circ[/tex].

Angles:

  • Angle of elevation of the base of the tree as it appears to the observer: [tex]\angle \rm B\hat{O}R = 51^\circ[/tex].
  • Angle of elevation of the top of the tree as it appears to the observer: [tex]\angle \rm B\hat{O}A = 57^\circ[/tex].

Let the length of segment [tex]\rm BR[/tex] (vertical distance between the base of the tree and the base of the hill) be [tex]x\; \rm ft[/tex].

The question is asking for the length of segment [tex]\rm AB[/tex]. Notice that the length of this segment is [tex]\mathrm{AB} = (x + 20)\; \rm ft[/tex].

The length of segment [tex]\rm OB[/tex] could be represented in two ways:

  • In right triangle [tex]\rm \triangle OBR[/tex] as the side adjacent to [tex]\angle \rm B\hat{O}R = 51^\circ[/tex].
  • In right triangle [tex]\rm \triangle OBA[/tex] as the side adjacent to [tex]\angle \rm B\hat{O}A = 57^\circ[/tex].

For example, in right triangle [tex]\rm \triangle OBR[/tex], the length of the side opposite to [tex]\angle \rm B\hat{O}R = 51^\circ[/tex] is segment [tex]\rm BR[/tex]. The length of that segment is [tex]x\; \rm ft[/tex].

[tex]\begin{aligned}\tan{\left(\angle\mathrm{B\hat{O}R}\right)} = \frac{\,\rm {BR}\,}{\,\rm {OB}\,} \; \genfrac{}{}{0em}{}{\leftarrow \text{opposite}}{\leftarrow \text{adjacent}}\end{aligned}[/tex].

Rearrange to find an expression for the length of [tex]\rm OB[/tex] (in [tex]\rm ft[/tex]) in terms of [tex]x[/tex]:

[tex]\begin{aligned}\mathrm{OB} &= \frac{\mathrm{BR}}{\tan{\left(\angle\mathrm{B\hat{O}R}\right)}} \\ &= \frac{x}{\tan\left(51^\circ\right)}\approx 0.810\, x\end{aligned}[/tex].

Similarly, in right triangle [tex]\rm \triangle OBA[/tex]:

[tex]\begin{aligned}\mathrm{OB} &= \frac{\mathrm{AB}}{\tan{\left(\angle\mathrm{B\hat{O}A}\right)}} \\ &= \frac{x + 20}{\tan\left(57^\circ\right)}\approx 0.649\, (x + 20)\end{aligned}[/tex].

Equate the right-hand side of these two equations:

[tex]0.810\, x \approx 0.649\, (x + 20)[/tex].

Solve for [tex]x[/tex]:

[tex]x \approx 81\; \rm ft[/tex].

Hence, the height of the top of this tree relative to the base of the hill would be [tex](x + 20)\; {\rm ft}\approx 101\; \rm ft[/tex].

Ver imagen jacob193