Respuesta :
Answer:
Approximately [tex]101\; \rm ft[/tex] (assuming that the height of the base of the hill is the same as that of the observer.)
Step-by-step explanation:
Refer to the diagram attached.
- Let [tex]\rm O[/tex] denote the observer.
- Let [tex]\rm A[/tex] denote the top of the tree.
- Let [tex]\rm R[/tex] denote the base of the tree.
- Let [tex]\rm B[/tex] denote the point where line [tex]\rm AR[/tex] (a vertical line) and the horizontal line going through [tex]\rm O[/tex] meets. [tex]\angle \rm B\hat{A}R = 90^\circ[/tex].
Angles:
- Angle of elevation of the base of the tree as it appears to the observer: [tex]\angle \rm B\hat{O}R = 51^\circ[/tex].
- Angle of elevation of the top of the tree as it appears to the observer: [tex]\angle \rm B\hat{O}A = 57^\circ[/tex].
Let the length of segment [tex]\rm BR[/tex] (vertical distance between the base of the tree and the base of the hill) be [tex]x\; \rm ft[/tex].
The question is asking for the length of segment [tex]\rm AB[/tex]. Notice that the length of this segment is [tex]\mathrm{AB} = (x + 20)\; \rm ft[/tex].
The length of segment [tex]\rm OB[/tex] could be represented in two ways:
- In right triangle [tex]\rm \triangle OBR[/tex] as the side adjacent to [tex]\angle \rm B\hat{O}R = 51^\circ[/tex].
- In right triangle [tex]\rm \triangle OBA[/tex] as the side adjacent to [tex]\angle \rm B\hat{O}A = 57^\circ[/tex].
For example, in right triangle [tex]\rm \triangle OBR[/tex], the length of the side opposite to [tex]\angle \rm B\hat{O}R = 51^\circ[/tex] is segment [tex]\rm BR[/tex]. The length of that segment is [tex]x\; \rm ft[/tex].
[tex]\begin{aligned}\tan{\left(\angle\mathrm{B\hat{O}R}\right)} = \frac{\,\rm {BR}\,}{\,\rm {OB}\,} \; \genfrac{}{}{0em}{}{\leftarrow \text{opposite}}{\leftarrow \text{adjacent}}\end{aligned}[/tex].
Rearrange to find an expression for the length of [tex]\rm OB[/tex] (in [tex]\rm ft[/tex]) in terms of [tex]x[/tex]:
[tex]\begin{aligned}\mathrm{OB} &= \frac{\mathrm{BR}}{\tan{\left(\angle\mathrm{B\hat{O}R}\right)}} \\ &= \frac{x}{\tan\left(51^\circ\right)}\approx 0.810\, x\end{aligned}[/tex].
Similarly, in right triangle [tex]\rm \triangle OBA[/tex]:
[tex]\begin{aligned}\mathrm{OB} &= \frac{\mathrm{AB}}{\tan{\left(\angle\mathrm{B\hat{O}A}\right)}} \\ &= \frac{x + 20}{\tan\left(57^\circ\right)}\approx 0.649\, (x + 20)\end{aligned}[/tex].
Equate the right-hand side of these two equations:
[tex]0.810\, x \approx 0.649\, (x + 20)[/tex].
Solve for [tex]x[/tex]:
[tex]x \approx 81\; \rm ft[/tex].
Hence, the height of the top of this tree relative to the base of the hill would be [tex](x + 20)\; {\rm ft}\approx 101\; \rm ft[/tex].
