Respuesta :

Answer:

The height of right circular cone is h = 15.416 cm

Step-by-step explanation:

The formula used to calculate lateral surface area of right circular cone is: [tex]s=\pi r\sqrt{r^2+h^2}[/tex]

where r is radius and h is height.

We are given:

Lateral surface area s = 236.64 cm²

Radius r = 4.75 cm

We need to find height of right circular cone.

Putting values in the formula and finding height:

[tex]s=\pi r\sqrt{r^2+h^2}\\236.64=3.14(4.75)\sqrt{(3.75)^2+h^2} \\236.64=14.915\sqrt{(3.75)^2+h^2} \\\frac{236.64}{14.915}=\sqrt{14.0625+h^2} \\15.866=\sqrt{14.0625+h^2} \\Switching\:sides\:\\\sqrt{14.0625+h^2} =15.866\\Taking\:square\:on\:both\:sides\\(\sqrt{14.0625+h^2})^2 =(15.866)^2\\14.0625+h^2=251.729\\h^2=251.729-14.0625\\h^2=237.6665\\Taking\:square\:root\:on\:both\:sides\\\sqrt{h^2}=\sqrt{237.6665} \\h=15.416[/tex]

So, the height of right circular cone is h = 15.416 cm