Respuesta :

Answer:

[tex]x = \left ( \dfrac{ \left (3 ^{\frac{2}{3} } + 1 \right ) ^2}{3 ^{\frac{2}{3} } } \right )^{\frac{1}{2} } =\dfrac{ 3 ^{\frac{2}{3} } + 1 }{3 ^{\frac{1}{3} } }[/tex]

[tex]\dfrac{9 \cdot x + 10}{3} = \left ( \dfrac{ 3 ^{\frac{2}{3} } + 1 }{3 ^{\frac{1}{3} } } \right )^3 } = x^3[/tex]

Therefore;

[tex]x = \sqrt[3]{\dfrac{9 \cdot x + 10}{3}}[/tex]

Step-by-step explanation:

Given that we have;

[tex]x^2 - 2 = 3 ^{\frac{2}{3} } + 3 ^{-\frac{2}{3} }[/tex]

[tex]x^2 = 3 ^{\frac{2}{3} } + 3 ^{-\frac{2}{3} } + 2 = \dfrac{3 ^{\frac{4}{3} } + 1 + 2 \times 3 ^{\frac{2}{3} }}{3 ^{\frac{2}{3} } } = 3 ^{-\frac{2}{3} } \times \left ( 3 ^{\frac{4}{3} } + 1 + 2 \times 3 ^{\frac{2}{3} } \right )[/tex]

[tex]x^2 = 3 ^{-\frac{2}{3} } \times \left ( 3 ^{\frac{4}{3} } + 1 + 2 \times 3 ^{\frac{2}{3} } \right )[/tex]

[tex]x = 3 ^{-\frac{1}{3} } \times \left ( 3 ^{\frac{4}{3} } + 1 + 2 \times 3 ^{\frac{2}{3} } \right )^{\frac{1}{2} }[/tex]

[tex]x = \sqrt{ \dfrac{3 ^{\frac{4}{3} } + 1 + 2 \times 3 ^{\frac{2}{3} }}{3 ^{\frac{2}{3} } } } = \left ( \dfrac{3 ^{\frac{4}{3} } + 1 + 2 \times 3 ^{\frac{2}{3} }}{3 ^{\frac{2}{3} } } \right )^{\frac{1}{2} }[/tex]

[tex]x = \sqrt{ \dfrac{3 ^{\frac{4}{3} } + 1 + 2 \times 3 ^{\frac{2}{3} }}{3 ^{\frac{2}{3} } } } = \left ( \dfrac{3 ^{\frac{4}{3} } + 1 + 2 \times 3 ^{\frac{2}{3} }}{3 ^{\frac{2}{3} } } \right )^{\frac{1}{2} } = \left ( \dfrac{3 ^{\frac{4}{3} } + 2 \times 3 ^{\frac{2}{3} } + 1}{3 ^{\frac{2}{3} } } \right )^{\frac{1}{2} }[/tex]

[tex]x = \sqrt{ \dfrac{3 ^{\frac{4}{3} } + 1 + 2 \times 3 ^{\frac{2}{3} }}{3 ^{\frac{2}{3} } } } = \left ( \dfrac{3 ^{\frac{4}{3} } + 2 \times 3 ^{\frac{2}{3} } + 1}{3 ^{\frac{2}{3} } } \right )^{\frac{1}{2} } = \left ( \dfrac{ \left (3 ^{\frac{2}{3} } + 1 \right ) ^2}{3 ^{\frac{2}{3} } } \right )^{\frac{1}{2} }[/tex]

[tex]x = \left ( \dfrac{ \left (3 ^{\frac{2}{3} } + 1 \right ) ^2}{3 ^{\frac{2}{3} } } \right )^{\frac{1}{2} } =\dfrac{ 3 ^{\frac{2}{3} } + 1 }{3 ^{\frac{1}{3} } }[/tex]

[tex]\dfrac{9 \cdot x + 10}{3} = 3 \cdot x + \dfrac{10}{3} = 3 \times \dfrac{ 3 ^{\frac{2}{3} } + 1 }{3 ^{\frac{1}{3} } } +\dfrac{10}{3} = \dfrac{ 3 ^{\frac{5}{3} } + 3 }{3 ^{\frac{1}{3} } } + \dfrac{10}{3}= \dfrac{ 3 ^{\frac{7}{3} } + 3 ^{\frac{2}{3} }\times3+ 10 }{3 } } }[/tex]

[tex]\dfrac{9 \cdot x + 10}{3} =\dfrac{ 3 ^{\frac{7}{3} } + 3 ^{\frac{2}{3} }\times3+ 10 }{3 } } } = \dfrac{ 3 ^{\frac{7}{3} } + 3 ^{\frac{5}{3} }+ 10 }{3 } } } = \left ( \dfrac{ 3 ^{\frac{2}{3} } + 1 }{3 ^{\frac{1}{3} } } \right )^3 } = x^3[/tex]

Therefore;

[tex]x^3 = \dfrac{9 \cdot x + 10}{3}[/tex]

[tex]x = \sqrt[3]{\dfrac{9 \cdot x + 10}{3}}[/tex]