The following shape is a rhombus. Find the measure of each unknown angle:
90
52
38
46
72

By using property - 1,
m∠APD = m∠DPC = m∠BPC = m∠APB = 90°
Apply triangle sum theorem in ΔAPD,
m∠DAP + m∠APD + m∠DPA = 180°
52° + 90°+ m∠DPA = 180°
m∠DPA = 38°
By using property - 3,
m∠PDC = m∠DPA = 38°
m∠PAB = 52°
By using property - 2,
m∠ADC + m∠DCB = 180°
2(38°) + m∠DCB = 180°
m∠DCB = 104°
Therefore, m∠PCD = m∠PCB = [tex]\frac{104}{2}[/tex] = 52°
m∠DAP = m∠BAP = 52°
Since, m∠ADC = m∠ABC = 76°
Therefore, mABP = m∠CBP = [tex]\frac{76}{2}=38^\circ[/tex]
Hence, m∠APD = m∠DPC = m∠BPC = m∠APB = 90°, m∠DPA = 38°, m∠PAB = 52°, m∠PCD = m∠PCB = 52°, m∠BAP = 52°, mABP = m∠CBP = 38°.
Learn more about rhombus here,
https://brainly.com/question/11812488?referrer=searchResults