Respuesta :
Confidence interval of a population proportion is given by p^ + or - sqrt(p^(1 - p^)/n); where p^ = 450/600 = 0.75 and n = 600
99.7% convidence interval = 0.75 + or - 2.96 x sqrt(0.75(1 - 0.75)/600) = 0.75 + or - 2.96 x sqrt(0.75(0.25)/600) = 0.75 + or - 2.96 x 0.0177 = 0.75 + or - 0.0524 = 0.697 to 0.803 = 69.7% to 80.3%
99.7% convidence interval = 0.75 + or - 2.96 x sqrt(0.75(1 - 0.75)/600) = 0.75 + or - 2.96 x sqrt(0.75(0.25)/600) = 0.75 + or - 2.96 x 0.0177 = 0.75 + or - 0.0524 = 0.697 to 0.803 = 69.7% to 80.3%