Given: \overline{BD} \cong \overline{BE}, BD ≅ BE , \overline{DE} DE bisects \overline{AB} AB and \overline{DE} DE bisects \overline{BC}. BC . Prove: \overline{AB} \cong \overline{BC} AB ≅ BC .

Respuesta :

Given:

[tex]\overline{BD} \cong \overline{BE}[/tex]

DE bisects [tex]\overline{AB}[/tex].

DE bisects [tex]\overline{BC}[/tex].

To prove:

[tex]\overline{AB} \cong \overline{BC}[/tex]

Proof:

DE bisects [tex]\overline{AB}[/tex]

Then, [tex]AD=BD[/tex].         ...(i)

DE bisects [tex]\overline{BC}[/tex].

Then, [tex]BE=CE[/tex].           ...(ii)

We have,

[tex]\overline{BD} \cong \overline{BE}[/tex]        ...(iii)

Using (i), (ii) and (iii), we get

[tex]\overline{AD} \cong \overline{CE}[/tex]         ...(iv)

Adding (iii) and (iv), we get

[tex]\overline{BD}+\overline{AD} \cong \overline{BE}+\overline{CE}[/tex]

[tex]\overline{AB} \cong \overline{BC}[/tex]

Hence proved.

Ver imagen erinna