Please help with BOTh pics attached below. Since there are 2 i will give braineslt if u solve both of them, if you can only solve 1 that is fine tough

Please help with BOTh pics attached below Since there are 2 i will give braineslt if u solve both of them if you can only solve 1 that is fine tough class=
Please help with BOTh pics attached below Since there are 2 i will give braineslt if u solve both of them if you can only solve 1 that is fine tough class=

Respuesta :

Answer:

[tex]1. x=27\\2. x=30[/tex]

Step-by-step explanation:

[tex]1.\ We\ are\ given\ that,\\Point\ W\ belongs\ to\ line\ VX\ or\ Point\ W\ lies\ in\ the\ line\ VX.\\Point\ Y\ belongs\ to\ line\ XZ\ or\ Point\ Y\ lies\ in\ the\ line\ XZ.\\\angle WXY=90\\Now\ let's\ consider\ \triangle XYW.\\We\ observe\ that,\\\angle XWY\ and\ \angle VWY\ form\ a\ linear\ pair\ and\ hence\ are\ supplementary.\\Hence,\\\angle XWY\ + \angle VWY\ =180\\\angle XWY=180- \angle VWY\\Substituting\ \angle VWY=6x\ in\ the\ equation\ (\angle XWY=180- \angle VWY),\\[/tex][tex]\angle XWY=180-6x\\Now\ \ \angle XWY\ and\ \angle WXY\ are\ interior\ angles\ opposite\ to\ \angle WYZ.\\\\Hence,\ from\ the\ 'Exterior\ Angle\ Property',\ we\ know\ that,\ the\\ measure of\ the\ \exterior\ angle\ is\ equal\ to\ the\ sum\ of\ the\ interior\ opposite\\ angles.\\Hence,\\\angle XWY + \angle WXY= \angle WYX\\Substituting\ \angle XWY=(180-6x),\ \angle WXY=90,\ \angle WYX=4x,\\(180-6x)+90=4x\\-6x-4x=-90-180 \\-10x=-270\\x=\frac{-270}{-10}\\x=27[/tex]

[tex]2. We\ are\ given\ that,\\Point\ N\ belongs\ to\ the\ line\ KO\ or\ Point\ N\ lies\ on\ the\ line\ KO.\\\angle LNM=45, \angle ONM=105, \angle NLM=90\\Hence,\\As\ we\ observe\ that,\\\angle LNM,\angle ONM\ and\ \angle KNL\ lie\ on\ the\ line\ KO\ and\ are\ hence,\\ supplementary.\\Hence,\\\angle LNM + \angle ONM\ + \angle KNL =180\\Substituting\ \angle LNM=45, \angle ONM=105,\\45+105+ \angle KNL=180\\150+ \angle KNL=180\\\angle KNL=180-150\\\angle KNL=30[/tex]

[tex]Hence\ by\ considering\ \triangle NML,\\\angle LNM + \angle NLM + \angle NML=180\ [Angle\ Sum\ Property\ Of\ A\ Triangle]\\Hence\ by\ substituting\ \angle LNM=45, \angle NLM=90,\\45+90+\angle NML=180\\135+\angle NML=180\\\angle NML=180-135\\\angle NML=45\\Now,\ as\ we\ observe\ that\ \angle KNM= \angle KNL+ \angle LNM\\Hence\ by\ substituting\ \angle KNL=30, \angle LNM=45,\\\angle KNM=30+45\\\angle\ KNM=75\\[/tex]

[tex]Now,\ consider\ \triangle\ KNM,\\\angle NKM+ \angle KNM + \angle NMK=180 [Angle\ Sum\ Property\ Of\ A\ Triangle]\\Hence\ substituting\ \angle NKM=45, \angle KNM=75 , \angle NMK=2x,\\45+ 75 + 2x=180\\120+2x=180\\2x=180-120\\2x=60\\x=\frac{60}{2}\\x=30[/tex]