Respuesta :

Answer:

[tex]\mathbf{a}\cdot \mathbf{b}=-3[/tex]

Step-by-step explanation:

The dot product of vectors.

Given two vectors a and b in their rectangular form:

[tex]\mathbf{a}= a_x\mathbf{i}+a_y\mathbf{j}[/tex]

[tex]\mathbf{b}= b_x\mathbf{i}+b_y\mathbf{j}[/tex]

The dot product of the vectors is a scalar with value:

[tex]\mathbf{a}\cdot \mathbf{b}=a_x.a_y+b_x.b_y[/tex]

The given vectors are:

[tex]\mathbf{u}= -5\mathbf{i}+3\mathbf{j}[/tex]

[tex]\mathbf{v}= 3\mathbf{i}+4\mathbf{j}[/tex]

Calculating the dot product:

[tex]\mathbf{a}\cdot \mathbf{b}=(-5)(3)+(3)(4)=-15+12=-3[/tex]

[tex]\mathbf{a}\cdot \mathbf{b}=-3[/tex]