Answer:
The perimeter of the square LAMP is 8[tex]\sqrt{10}[/tex] units
Step-by-step explanation:
The rule of the distance between two points (x1, y1) and (x2, y2) is
d = [tex]\sqrt{(x2-x1)^{2}+(y2-y1)^{2}}[/tex]
∵ LAMP is a square
∵ The sides of the square are equal in lengths
∴ LA = AM = MP = PL
Let us find the length of one side of it
∵ L = (-2, -3) and A = (4, -1)
∴ x1 = -2 and y1 = -3
∴ x2 = 4 and y2 = -1
→ Substitute them in the rule of the distance above to find LA
∵ LA = [tex]\sqrt{(4 - -2)^{2}+(-1--3)^{2}}[/tex]
∴ LA = [tex]\sqrt{(4+2)^{2}+(-1+3)^{2}}[/tex]
∴ LA = [tex]\sqrt{(6)^{2}+(2)^{2}}[/tex]
∴ LA = [tex]\sqrt{36+4}[/tex] = [tex]\sqrt{40}[/tex]
→ Simplify the root
∴ LA = 2[tex]\sqrt{10}[/tex] units
∵ The perimeter of the square = 4 × side
∴ The perimeter of the square = 4 × 2[tex]\sqrt{10}[/tex]
∴ The perimeter of the square = 8[tex]\sqrt{10}[/tex]
∴ The perimeter of the square LAMP is 8[tex]\sqrt{10}[/tex] units