In triangle XYZ, angle Y = 45º and angle Z = 60º. If XZ = 4, then what is XY?

Answer:
[tex]XY = 4.9[/tex]
Step-by-step explanation:
Given
[tex]XZ= 4[/tex]
[tex]\angle Y = 45[/tex]
[tex]\angle Z = 60[/tex]
Required
Determine the measure of side XY
To do this, we make use of sine law. This is as follows:
[tex]\frac{a}{\sin\ A} = \frac{b}{\sin\ B} = \frac{c}{\sin\ C}[/tex]
In this case:
[tex]\frac{4}{\sin(45)} = \frac{XY}{\sin(60)}[/tex]
Cross Multiply
[tex]XY * \sin(45) = 4 * \sin(60)[/tex]
[tex]XY * 0.7071 = 4 * 0.8660[/tex]
Make XY the subject
[tex]XY = \frac{4 * 0.8660}{0.7071}[/tex]
[tex]XY = \frac{3.4640}{0.7071}[/tex]
[tex]XY = 4.89888276057[/tex]
[tex]XY = 4.9[/tex] -- approximated