Respuesta :

Answer:

[tex]XY = 4.9[/tex]

Step-by-step explanation:

Given

[tex]XZ= 4[/tex]

[tex]\angle Y = 45[/tex]

[tex]\angle Z = 60[/tex]

Required

Determine the measure of side XY

To do this, we make use of sine law. This is as follows:

[tex]\frac{a}{\sin\ A} = \frac{b}{\sin\ B} = \frac{c}{\sin\ C}[/tex]

In this case:

[tex]\frac{4}{\sin(45)} = \frac{XY}{\sin(60)}[/tex]

Cross Multiply

[tex]XY * \sin(45) = 4 * \sin(60)[/tex]

[tex]XY * 0.7071 = 4 * 0.8660[/tex]

Make XY the subject

[tex]XY = \frac{4 * 0.8660}{0.7071}[/tex]

[tex]XY = \frac{3.4640}{0.7071}[/tex]

[tex]XY = 4.89888276057[/tex]

[tex]XY = 4.9[/tex] -- approximated