Respuesta :

Given:

[tex]y=\log_{\sqrt{x}}x[/tex]

To find:

The value of [tex]\dfrac{dy}{dx}[/tex].

Solution:

We have,

[tex]y=\log_{\sqrt{x}}x[/tex]

It can be written as

[tex]y=\log_{\sqrt{x}}(\sqrt{x})^2[/tex]

Using property of log, we get

[tex]y=2[/tex]          [tex][\because \log_aa^x=x][/tex]

Now, differentiate both sides with respect to x.

[tex]\dfrac{dy}{dx}=\dfrac{d}{dx}(2)[/tex]

[tex]\dfrac{dy}{dx}=0[/tex]          [tex][\because \dfrac{d}{dx}(Constant)=0][/tex]

Therefore, the value of [tex]\dfrac{dy}{dx}[/tex] is 0.