A person saving for retirement makes an initial deposit of $1,000 to a bank account earning interest at a rate of 3% per year compounded monthly, and each month she adds an additional $200 to the account For each nonnegative integer n, let An be the amount in the account at the end of n months. Find a recurrence relation relating Ak to Ak-1. Use iteration to find an explicit formula for An.

Respuesta :

Answer:

Step-by-step explanation:

(a)

From the given information:

Let An denote the amount in the account at the end of n month

Thus,

[tex]A_o[/tex] =1000

After the first month ends, interest = [tex]=A_o \times \dfrac{3}{100} \times \dfrac{1}{12}[/tex]

= [tex]0.0025A_o[/tex]

Additional deposit = $200

Now,

[tex]A_1 = A_o + 0.0025A_o + 200[/tex]

[tex]=1.0025A_o + 200 --- eqn(1)[/tex]

Interest after 2nd month, = [tex]A_1 \times \dfrac{3}{100} \times \dfrac{1}{2}[/tex]

Additional deposit = $200

[tex]A_2 = A_1 + 0.0025A_1 + 200[/tex]

[tex]=1.0025A_1 + 200 --- eqn(2)[/tex]

Thus:

[tex]A_n = 1.0025A_{n-1} +200[/tex]

(b)

From above;

[tex]A_1 = 1.0025A_ 0+ 200[/tex]

Thus;

[tex]A _2 = 1.0025A_ 1+ 200[/tex]

[tex]A_2 = 1.0025( 1.0025A_ 0+ 200)+ 200[/tex]

[tex]A_2 = 1.0025^2A_o +200 ( 1+1.0025)[/tex]

[tex]A _3 = 1.0025A_ 2+ 200[/tex]

[tex]A _3 = 1.0025( 1.0025^2A_o +200 ( 1+1.0025))+ 200[/tex]

[tex]A _3 = 11.0025^3A_o +200 ( 1+1.0025 + 1.0025^2)[/tex]

To continuity...

[tex]A_n = 1.0025^n A_o + 200 (1+1.0025 +1.0025^2 +...+ 1.0025^{n-1} ) ---- (3)[/tex]

Thus, we have a geometric term [tex]1 + 1.0025 +1.0025^2 +...+ 1.0025^{n-1}[/tex]

where:

a = 1 (first term)

r = 1.0025>1 (common ratio)

Thus;

[tex]1 + 1.0025 +1.0025^2 +...+ 1.0025^{n-1} = \dfrac{a(r^n -1)}{r-1}[/tex]

[tex]= \dfrac{1(1.0025^n -1)}{1.0025-1}[/tex]

[tex]= 400(1.0025^n -1)[/tex]

From equation(3)

[tex]A_n = (1.0025^n \times 1000) + 80000(1.0025^n -1)[/tex]

[tex]A_n = 1.0025^n \times 81000-80000[/tex]