Answer:
The final velocity will be half of the initial velocity of the spacecraft.
Explanation:
Angular momentum is conserved for the circular force motion and central force motion.
Considering
L = MVR = Constant
Where
M = Mass of the object
V = Velocity of the object
r = radius of circle
We know that
V = [tex]\frac{1}{R}[/tex]
So,
[tex]\frac{V_{2} }{V_{1} }[/tex] = [tex]\frac{R_{1} }{R_{2} }[/tex]
As per the given data
[tex]R_{1}[/tex] = Initial Radius = 300 km
[tex]R_{2}[/tex] = Final Radius = 600 km
[tex]V_{1}[/tex] = Initial Velocity =
[tex]V_{2}[/tex] = Final Velocity =
Placing values in the formula
[tex]\frac{V_{2} }{V_{1} }[/tex] = [tex]\frac{300 km}{600 km }[/tex]
[tex]\frac{V_{2} }{V_{1} }[/tex] = [tex]\frac{1}{2}[/tex]
[tex]{V_{2}[/tex] = [tex]\frac{1}{2} V_{1}[/tex]
Hence, The final velocity will half of the initial velocity of the spacecraft.