Answer:
a) Â P(exactly two defectives) = 0.2734
b) N [tex]\simeq[/tex] 55
Step-by-step explanation:
From the given information:
P(exactly two defectives) = P(X =2) = [tex]^{100}C_2 \times ( 0.02)^2 \times(1-0.02)^{100-2}[/tex]
[tex]= \dfrac{100!}{2!(100-2)!} \times ( 0.02)^2 \times(0.98)^{98}[/tex]
[tex]= 4950 \times 4 \times 10^{-4} \times 0.1380878341[/tex]
= 0.2734
Thus, P(exactly two defectives) = 0.2734
b)
To find:
P(X ≥ 1 )
let X be the random variable that obeys a binomial distribution, X represents the number of defectives,
∴
[tex]X \sim B ( N, 0.02)[/tex]
[tex]P(X \ge 1 ) = 1 - P(X < 1) \\ \\ P(X \ge 1 ) = 1 - P(X = 0)[/tex]
[tex]0.6676 = 1 - ^NC_0 \times (0.02)^0 (0.98)^N[/tex]
[tex]0.6676 = 1 - (0.98)^N[/tex]
[tex](0.98)^N = 1 - 0.6676[/tex]
[tex](0.98)^N = 0.3324[/tex]
N log (0.98) = log (0.3324)
[tex]N = \dfrac{log \ 0.3324}{log \ 0.98}[/tex]
N = 54.51824841
N [tex]\simeq[/tex] 55