Respuesta :

Answer:

[tex]f[2-f^{-1}(x)]=x[/tex]

Step-by-step explanation:

Given function is,

f(x) = [tex]\frac{x-1}{2}[/tex]

Equation form of the function will be,

y = [tex]\frac{x-1}{2}[/tex]

Interchange x and y,

[tex]x=\frac{y-1}{2}[/tex]

Solve for y,

y = 2x + 1

Therefore, inverse of the function 'f' will be,

[tex]f^{-1}(x)=2x+1[/tex]

Now [tex][2-f^{-1}(x)][/tex] = 2 - [2x + 1]

                          = -2x + 1

Value of [tex]f[2-f^{-1}(x)][/tex] = f(2x + 1)

From the given function,

f(2x + 1) = [tex]\frac{(2x+1)-1}{2}[/tex]

            = x

Therefore, value of  [tex]f[2-f^{-1}(x)]=x[/tex]