Respuesta :
Step-by-step explanation:
x≡3(mod4) and x≡5(mod6)
=> x≡-1(mod4) and x≡-1(mod6)
Since LCM of 4 and 6 is 12,
=> x≡-1(mod12)
=> x≡11(mod12)
The smallest positive integer for x is 11.
Answer:
11
Step-by-step explanation:
Because 4 and 6 aren't co prime we can't start the chinese remainder theorem
so first we check
[tex]x\equiv 3\mod4\\\\\rightarrow x\equiv 3 \mod 2\\\\\rightarrow x \equiv 3 \mod 2[/tex]
because 4 = 2*2
[tex]x\equiv3\equiv1\mod2[/tex]
and the other one
[tex]x\equiv5\mod6\\\\\rightarrow x\equiv5\mod2\\\\\rightarrow x\equiv5\mod3\\\\x\equiv5\equiv1\mod2\\\\x\equiv5\equiv2\mod3[/tex]
so now we have
[tex]x\equiv3\mod4\\\\x\equiv1\mod2\\\\x\equiv2\mod3[/tex]
but the mod 2 we don't need it
so now we have
[tex]x\equiv3\mod 4\\\\x\equiv 2\mod 3\\\\[/tex]
for the first one we can say that
[tex]x=4n+3[/tex]
so we plug in that in the second one
[tex]4n+3\equiv2\mod3\\\\4n\equiv2\mod3\\\\n\equiv2\mod3[/tex]
we can say that
[tex]n=3k+2[/tex]
so for x
[tex]x=4(3k+2)+3\\\\x=12k+8+3\\\\x=12k+11[/tex]
so if k=0
a solution is 11
we check if it works
[tex]11\equiv8+3\equiv0+3\equiv3\mod4[/tex]
[tex]11\equiv6+5\equiv0+5\equiv5\mod6[/tex]
so it works so the smallest solution is 11