Find the particular solution to y ' = 2sin(x) given the general solution is y = C - 2cos(x) and the initial condition y of pi over 3 equals 1 . (5 points)
-2cos(x)
closeIncorrect
3 - 2cos(x)
checkCorrect
2 - 2cos(x)
-1 - 2cos(x)

Respuesta :

Answer:

[tex]y=2-2\cos(x)[/tex]

Step-by-step explanation:

We have the differential:

[tex]y^\prime=2\sin(x)[/tex]

With the general solution:

[tex]y=C-2\cos(x)[/tex]

And we want to find the particular solution such that it satisfies the initial condition:

[tex]\displaystyle y\Big(\frac{\pi}{3}\Big)=1[/tex]

So, we have:

[tex]y=C-2\cos(x)[/tex]

Substituting π/3 for x and 1 for y yields:

[tex]\displaystyle 1=C-2\cos\Big( \frac{\pi}{3} \Big)[/tex]

Solve for C. Evaluate:

[tex]\displaystyle 1=C-2(\frac{1}{2})[/tex]

Simplify:

[tex]1=C-1[/tex]

Hence:

[tex]C=2[/tex]

Therefore, our particular solution will be:

[tex]y=2-2\cos(x)[/tex]

Hence, our answer is C