Find the quantity of heat needed
to melt 100g of ice at -10 °C
into water at 10 °C. (39900 J)
(Note: Specific heat of ice is
2100 Jkg 'K', specific heat
of water is 4200 Jkg K',
Latent heat of fusion of ice is
336000 Jkg ').​

Respuesta :

Answer:

Approximately [tex]3.99\times 10^{4}\; \rm J[/tex] (assuming that the melting point of ice is [tex]0\; \rm ^\circ C[/tex].)

Explanation:

Convert the unit of mass to kilograms, so as to match the unit of the specific heat capacity of ice and of water.

[tex]\begin{aligned}m&= 100\; \rm g \times \frac{1\; \rm kg}{1000\; \rm g} \\ &= 0.100\; \rm kg\end{aligned}[/tex]

The energy required comes in three parts:

  • Energy required to raise the temperature of that [tex]0.100\; \rm kg[/tex] of ice from [tex](-10\; \rm ^\circ C)[/tex] to [tex]0\; \rm ^\circ C[/tex] (the melting point of ice.)
  • Energy required to turn [tex]0.100\; \rm kg[/tex] of ice into water while temperature stayed constant.
  • Energy required to raise the temperature of that newly-formed [tex]0.100\; \rm kg[/tex] of water from [tex]0\; \rm ^\circ C[/tex] to [tex]10\;\ rm ^\circ C[/tex].

The following equation gives the amount of energy [tex]Q[/tex] required to raise the temperature of a sample of mass [tex]m[/tex] and specific heat capacity [tex]c[/tex] by [tex]\Delta T[/tex]:

[tex]Q = c \cdot m \cdot \Delta T[/tex],

where

  • [tex]c[/tex] is the specific heat capacity of the material,
  • [tex]m[/tex] is the mass of the sample, and
  • [tex]\Delta T[/tex] is the change in the temperature of this sample.

For the first part of energy input, [tex]c(\text{ice}) = 2100\; \rm J \cdot kg \cdot K^{-1}[/tex] whereas [tex]m = 0.100\; \rm kg[/tex]. Calculate the change in the temperature:

[tex]\begin{aligned}\Delta T &= T(\text{final}) - T(\text{initial}) \\ &= (0\; \rm ^\circ C) - (-10\; \rm ^\circ C) \\ &= 10\; \rm K\end{aligned}[/tex].

Calculate the energy required to achieve that temperature change:

[tex]\begin{aligned}Q_1 &= c(\text{ice}) \cdot m(\text{ice}) \cdot \Delta T\\ &= 2100\; \rm J \cdot kg \cdot K^{-1} \\ &\quad\quad \times 0.100\; \rm kg \times 10\; \rm K\\ &= 2.10\times 10^{3}\; \rm J\end{aligned}[/tex].

Similarly, for the third part of energy input, [tex]c(\text{water}) = 4200\; \rm J \cdot kg \cdot K^{-1}[/tex] whereas [tex]m = 0.100\; \rm kg[/tex]. Calculate the change in the temperature:

[tex]\begin{aligned}\Delta T &= T(\text{final}) - T(\text{initial}) \\ &= (10\; \rm ^\circ C) - (0\; \rm ^\circ C) \\ &= 10\; \rm K\end{aligned}[/tex].

Calculate the energy required to achieve that temperature change:

[tex]\begin{aligned}Q_3&= c(\text{water}) \cdot m(\text{water}) \cdot \Delta T\\ &= 4200\; \rm J \cdot kg \cdot K^{-1} \\ &\quad\quad \times 0.100\; \rm kg \times 10\; \rm K\\ &= 4.20\times 10^{3}\; \rm J\end{aligned}[/tex].

The second part of energy input requires a different equation. The energy [tex]Q[/tex] required to melt a sample of mass [tex]m[/tex] and latent heat of fusion [tex]L_\text{f}[/tex] is:

[tex]Q = m \cdot L_\text{f}[/tex].

Apply this equation to find the size of the second part of energy input:

[tex]\begin{aligned}Q_2&= m \cdot L_\text{f}\\&= 0.100\; \rm kg \times 3.36\times 10^{5}\; \rm J\cdot kg^{-1} \\ &= 3.36\times 10^{4}\; \rm J\end{aligned}[/tex].

Find the sum of these three parts of energy:

[tex]\begin{aligned}Q &= Q_1 + Q_2 + Q_3 = 3.99\times 10^{4}\; \rm J\end{aligned}[/tex].