Compare the rate of heat transfer by radiation for two objects, the first one has the temperature Ts1= 25 degree Celsius and the second is kept at temperature Ts2 = 40 degree Celsius. Suppose they are made of identical material (e1=e2) and have the same area participating in radiation (Ar1=Ar2). The Surrounding temperature Tr= 25 degree Celsius.

Respuesta :

Answer:

The rate of heat transfer of the second object is greater than the first object.

Explanation:

[tex]\varepsilon[/tex] = Emissivity of the object

[tex]\sigma[/tex] = Stefan-Boltzmann constant = [tex]5.67\times 10^{-8}\ \text{W/m}^2/\text{K}^4[/tex]

[tex]T_1[/tex] = Temperature of surface 1 = [tex]25^{\circ}\text{C}+273.15=298.15\ \text{K}[/tex]

[tex]T_2[/tex] = Temperature of surface 2 = [tex]40^{\circ}\text{C}+273.15=313.15\ \text{K}[/tex]

[tex]T_0[/tex] = Surrounding temperature = [tex]25^{\circ}\text{C}+273.15=298.15\ \text{K}[/tex]

Rate of heat transfer is given by

[tex]P_1=\varepsilon \sigma (T_1^4-T_0^4)\\\Rightarrow P_1=\varepsilon \sigma A_1(298.15^4-298.15^4)\\\Rightarrow P_1=0\ \text{W}[/tex]

[tex]P_2=\varepsilon \sigma (T_2^4-T_0^4)\\\Rightarrow P_2=\varepsilon 5.67\times10^{-8} A_2(313.15^4-298.15^4)\\\Rightarrow P_2=\varepsilon A_297.2[/tex]

[tex]\varepsilon A_297.2>0[/tex]

So, [tex]P_2>P_1[/tex]

Hence, the rate of heat transfer of the second object is greater than the first object.