contestada

сатре о
Find the condition that the roots of the quadratic equation
ax2 + cx + C =0
may be in the ratio m:n​

Respuesta :

Answer:

[tex]mnb^2 = ac(m+n)^2[/tex]

Step-by-step explanation:

Given

[tex]ax^2 +bx + c = 0[/tex]

Required

Condition that the roots is in m : n

Let the roots of the equation be represented as: mA and nA

A quadratic equation has the form:

[tex]x^2 + (sum\ of\ roots)x + (product\ of\ roots)=0[/tex]

or

[tex]x^2 - (\frac{b}{a})x + \frac{c}{a} = 0[/tex]

We have the roots to be mA and nA.

So, the sum is represented as:

[tex]Sum = mA + nA[/tex]

[tex]Sum = A(m + n)[/tex]

And the product is represented as:

[tex]Product = mA * nA[/tex]

[tex]Product = mnA^2[/tex]

By comparing:

[tex]x^2 + (sum\ of\ roots)x + (product\ of\ roots)=0[/tex]

with

[tex]x^2 - (\frac{b}{a})x + \frac{c}{a} = 0[/tex]

[tex]Sum = -\frac{b}{a}[/tex]

[tex]Product = \frac{c}{a}[/tex]

So, we have:

[tex]Sum = -\frac{b}{a}[/tex]

[tex]A(m + n) = -\frac{b}{a}[/tex]

Make A the subject:

[tex]A = \frac{-b}{a(m+n)}[/tex]

[tex]Product = \frac{c}{a}[/tex]

[tex]mnA^2 = \frac{c}{a}[/tex]

Substitute [tex]A = \frac{-b}{a(m+n)}[/tex]

[tex]mn(\frac{-b}{a(m+n)})^2 = \frac{c}{a}[/tex]

[tex]mn\frac{b^2}{a^2(m+n)^2} = \frac{c}{a}[/tex]

Multiply both sides by a

[tex]a * mn\frac{b^2}{a^2(m+n)^2} = \frac{c}{a} * a[/tex]

[tex]\frac{mnb^2}{a(m+n)^2} = c[/tex]

Cross Multiply:

[tex]mnb^2 = ac(m+n)^2[/tex]

Hence, the condition that the ratio is in m:n is

[tex]mnb^2 = ac(m+n)^2[/tex]