We know, Work done by all the forces is equal to change in potential energy :
[tex]W_{friction} + W_{air} + W_{engine} = \dfrac{(mv_f^2 + mgh_f)}{2}-\dfrac{(mv_i^2+mgh_i)}{2}[/tex]
Here,
[tex]h_i=0\ m\\\\v_i = 0\ m/s[/tex]
Putting all given values, we get :
[tex]W_{friction} + W_{air} + 5.10\times 10^6 = m\dfrac{(v_f^2 + gh_f)}{2}-0\\\\W_{friction} + W_{air} =1.5\times 10^3 \times \dfrac{(24^2 + (9.8\times 2.2\times 10^2))}{2}-5.10\times 10^6\\\\W_{friction} + W_{air} = -3.051\times 10^6\ J[/tex]
Hence, this is the required solution.