Respuesta :

Note: Your expression sounds a little unclear, so I am assuming your expression is

[tex]\left(y\:+\:1\right)^5\times \left(y\:+\:1\right)^3[/tex]

But, the procedure to solve the expressions involving exponents remains the same, so whatever the expression is, you may be able to get your concept clear.

In the end, I will solve both expressions.

Answer:

Please check the explanation

Step-by-step explanation:

Given the expression

[tex]\left(y\:+\:1\right)^5\times \left(y\:+\:1\right)^3[/tex]

solving the expression

[tex]\left(y\:+\:1\right)^5\times \left(y\:+\:1\right)^3[/tex]

[tex]\mathrm{Apply\:exponent\:rule}:\quad \:a^b\times \:a^c=a^{b+c}[/tex]

[tex]\left(y+1\right)^5\left(y+1\right)^3=\left(y+1\right)^{5+3}[/tex]

                          [tex]=\left(y+1\right)^8[/tex]

Therefore, we conclude that:

[tex]\left(y\:+\:1\right)^5\times \left(y\:+\:1\right)^3=\left(y+1\right)^8[/tex]

IF YOUR EXPRESSION IS THIS

                       ↓

[tex]\left(y\:+\:1\right)^{\left(5y+1\right)^3}[/tex]

solving the expression

as

[tex]\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3[/tex]

so

[tex]\left(5y+1\right)^3=125y^3+75y^2+15y+1[/tex]

               [tex]=125y^3+75y^2+15y+1[/tex]

Thus, the expression becomes

[tex]\left(y+1\right)^{\left(5y+1\right)^3}=\left(y+1\right)^{125y^3+75y^2+15y+1}[/tex]