Point G and point H are the same distance form point F. Which coordinates could be the location of point H?

Answer:
[tex]H = (5,1)[/tex]
Step-by-step explanation:
The attachment is not clear. However, the points of G and F are:
[tex]F = (3, 2)[/tex]
[tex]G = (4, 4)[/tex]
And the options are:
[tex]A.\ (1, 2) \\ B. (4, 2)\\ C. (5, 1) \\ D. (2, 5)[/tex]
Required
Determine the coordinates of H
This question will be solved using distance formula, D
[tex]D = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}[/tex]
Since F is equidistant of G and H, the formula can be represented as:
[tex]D = \sqrt{(x_2 - x)^2 + (y_2 - y)^2}[/tex] and
[tex]D = \sqrt{(x_1 - x)^2 + (y_1 - y)^2}[/tex]
Where:
[tex](x_1,y_1) = (4,4)[/tex]
[tex](x,y) = (3,2)[/tex]
[tex]H = (x_2,y_2)[/tex]
Substitute values for x , y , x2 and y2 in [tex]D = \sqrt{(x_2 - x)^2 + (y_2 - y)^2}[/tex]
[tex]D = \sqrt{(x_2 - 3)^2 + (y_2 - 2)^2}[/tex]
Square both sides:
[tex]D^2 = (x_2 - 3)^2 + (y_2 - 2)^2[/tex]
Substitute values for x , y , x1 and y1 in [tex]D = \sqrt{(x_1 - x)^2 + (y_1 - y)^2}[/tex]
[tex]D = \sqrt{(4 - 3)^2 + (4 - 2)^2}[/tex]
Square both sides:
[tex]D^2 = (4 - 3)^2 + (4 - 2)^2[/tex]
[tex]D^2 = (1)^2 + (2)^2[/tex]
[tex]D^2 = 1 + 4[/tex]
[tex]D^2 = 5[/tex]
Substitute 5 for D^2 in [tex]D^2 = (x_2 - 3)^2 + (y_2 - 2)^2[/tex]
[tex]5 = (x_2 - 3)^2 + (y_2 - 2)^2[/tex]
From the list of given options, the values of x and y that satisfy the above condition is: (5,1)
This is shown below
[tex]5 = (5-3)^2 + (1-2)^2[/tex]
[tex]5 = (2)^2 + (-1)^2[/tex]
[tex]5 = 4 + 1[/tex]
[tex]5 = 5[/tex]
Other options do not satisfy this condition. Hence, the coordinates of H is:
[tex]H = (5,1)[/tex]