Answer:
A
  The correct option is  C
B
 The  value of  z-test is  [tex]z = -2.267[/tex]
Step-by-step explanation:
From the question we are told that Â
  The null hypothesis  [tex]H_o : p = 0.22[/tex]
  The alternative hypothesis  [tex]H_a : p \ne 0.22[/tex]
  The  level of significance is  [tex]\alpha = 0.01[/tex]
  The sample proportion is  [tex]\^ p = 0.15[/tex]
   The sample size is  n = 180
Generally from central limit theorem
if  np  and  nq  are  >  5  then  normal sampling distribution can be used
So Â
   np =  180  * 0.22 =  39.6  >  5
and Â
   nq =  180 * (1 -0.22) =  140.4 > 5
So normal sampling distribution can be used
Generally the z-test is mathematically represented as
   [tex]z = \frac{\^ p - p }{ \sqrt{\frac{ p(1- p ) }{n } } }[/tex]
=> Â [tex]z = \frac{ 0.15 - 0.22 }{ \sqrt{\frac{ 0.2(1- 0.22 ) }{ 180 } } }[/tex]
=> Â [tex]z = -2.267[/tex]
 Â