Respuesta :
distance between 2 points, (x1,y1) and (x2,y2) is
D=[tex] \sqrt{(x2-x1)^2+(y2-y1)^2} [/tex]
points (0,0) and (6,3)
D=[tex] \sqrt{(6-0)^2+(3-0)^2} [/tex]
D=[tex] \sqrt{(6-0)^2+(3-0)^2} [/tex]
D=[tex] \sqrt{(6)^2+(3)^2} [/tex]
D=[tex] \sqrt{36+9} [/tex]
D=[tex] \sqrt{45} [/tex]
D=3√5
legnth of AB is 3√5
D=[tex] \sqrt{(x2-x1)^2+(y2-y1)^2} [/tex]
points (0,0) and (6,3)
D=[tex] \sqrt{(6-0)^2+(3-0)^2} [/tex]
D=[tex] \sqrt{(6-0)^2+(3-0)^2} [/tex]
D=[tex] \sqrt{(6)^2+(3)^2} [/tex]
D=[tex] \sqrt{36+9} [/tex]
D=[tex] \sqrt{45} [/tex]
D=3√5
legnth of AB is 3√5
Answer:
Length of ab is:
3√5
Step-by-step explanation:
Distance(D) between 2 points, (x1,y1) and (x2,y2) is given by
D=[tex]\sqrt{(x2-x1)^2+(y2-y1)^2}[/tex]
Here we have to find the distance between the points (0,0) and (6,3)
i.e. (x1,y1)=(0,0) and (x2,y2)=(6,3)
D=[tex] \sqrt{(6-0)^2+(3-0)^2} [/tex]
D=[tex] \sqrt{(6)^2+(3)^2} [/tex]
D=[tex] \sqrt{36+9} [/tex]
D=[tex] \sqrt{45} [/tex]
D=3√5
Hence, Length of ab is:
3√5