Respuesta :

Answer:

Area of the trapezium ABDE = 30 cm²

Step-by-step explanation:

Area of a trapezium = [tex]\frac{1}{2}(b_1+b_2)h[/tex]

Here, [tex]b_1[/tex] and [tex]b_2[/tex] are the parallel sides of the trapezium

h = Distance between the parallel sides

From the picture attached,

ΔCAE and ΔCBD are the similar triangles.

So by the property of similarity their sides will be proportional.

[tex]\frac{AE}{BD}= \frac{CE}{CD}[/tex]

[tex]\frac{9}{6}=\frac{CE}{8}[/tex]

CE = [tex]\frac{9\times 8}{6}[/tex]

CE = 12 cm

Therefore, DE = CE - CD

DE = 12 - 8 = 4 cm

Now area of trapezium ABDE = [tex]\frac{1}{2}(AE+BD)(DE)[/tex]

                                                  = [tex]\frac{1}{2}(6+9)4[/tex]

                                                  = 30 cm²

Therefore, area of the trapezium ABDE = 30 cm²