Respuesta :

Given:

Two secants intersecting each other outside the side the circle.

To find:

The value of x.

Solution:

Using Intersecting Secant Theorem, we get

[tex]x(x+8)=4(4+8)[/tex]

[tex]x^2+8x=4(12)[/tex]

[tex]x^2+8x=48[/tex]

[tex]x^2+8x-48=0[/tex]

Using splitting the middle terms, we get

[tex]x^2+12x-4x-48=0[/tex]

[tex]x(x+12)-4(x+12)=0[/tex]

[tex](x+12)(x-4)=0[/tex]

Using zero product property, we get

[tex](x+12)=0\text{ and }(x-4)=0[/tex]

[tex]x=-12\text{ and }x=4[/tex]

Side length cannot be negative, i.e., [tex]x\neq -12[/tex].

Therefore, the only value of x is 4.