Respuesta :

Answer:

a)  [tex]G(x)= \sin x + 2[/tex]

b) The coordinates of P are

[tex]\displaystyle \left( \frac{3\pi}{2},1\right)[/tex]

Step-by-step explanation:

Translation

The dashed line shows the graph of the function

[tex]y = \sin x[/tex]

This function has a maximum value of 1, a minimum value of -1, and a center value of 0.

a)

Graph G shows the same function but translated by 2 units up, thus the equation of G is:

[tex]\boxed{G(x)= \sin x + 2}[/tex]

b) The coordinates of P correspond to the value of

[tex]x = \frac{3\pi}{2}[/tex]

The value of G is

[tex]\displaystyle G(\frac{3\pi}{2})= \sin \frac{3\pi}{2} + 2[/tex]

Since

[tex]\sin \frac{3\pi}{2}=-1[/tex]

[tex]\displaystyle G(\frac{3\pi}{2})= -1+ 2=1[/tex]

The coordinates of P are

[tex]\displaystyle \left( \frac{3\pi}{2},1\right)[/tex]