Answer:
∴Given Δ ABC is not a right-angle triangle
a= AB = √45 = 3√5
b = BC = 12
c = AC = √45 = 3√5
Step-by-step explanation:
Given vertices are A(3,3) and B(6,9)
[tex]AB = \sqrt{x_{2}-x_{1} )^{2} +(y_{2}-y_{1} )^{2} }[/tex]
AB = [tex]\sqrt{(9-3)^{2}+(6-3)^{2} } = \sqrt{6^{2}+3^{2} } =\sqrt{45}[/tex]
Given vertices are B(6,9) and C( 6,-3)
[tex]B C = \sqrt{x_{2}-x_{1} )^{2} +(y_{2}-y_{1} )^{2} }[/tex]
= [tex]\sqrt{(-3-9)^{2}+(6-6)^{2} } =\sqrt{12^{2} } = 12[/tex]
BC = 12
Given vertices are A(3,3) and C( 6,-3)
[tex]AC = \sqrt{(6-3)^{2}+(-3-3)^{2} } = \sqrt{9+36} = \sqrt{45}[/tex]
AC² = AB²+BC²
45 = 45+144
45 ≠ 189
∴Given Δ ABC is not a right angle triangle