Respuesta :

Given:

f(x) is an exponential function.

[tex]f(2.5)=26[/tex]

[tex]f(6.5)=81[/tex]

To find:

The value of f(12), to the nearest hundredth.

Solution:

The general exponential function is

[tex]f(x)=ab^x[/tex]

For, x=2.5,

[tex]f(2.5)=ab^{2.5}[/tex]

[tex]26=ab^{2.5}[/tex]          ...(i)

For, x=6.5,

[tex]f(6.5)=ab^{6.5}[/tex]

[tex]81=ab^{6.5}[/tex]          ...(ii)

Divide (ii) by (i).

[tex]\dfrac{81}{26}=\dfrac{ab^{6.5}}{ab^{2.5}}[/tex]

[tex]\dfrac{81}{26}=b^4[/tex]

Taking 4th root on both sides, we get

[tex]\sqrt[4]{\dfrac{81}{26}}=b[/tex]

[tex]b\approx 1.32855[/tex]

Putting b=1.32855 in (i), we get

[tex]26=a(1.32855)^{2.5}[/tex]

[tex]26=a(2.03444)[/tex]

[tex]\dfrac{26}{2.03444}=a[/tex]

[tex]a\approx 12.7799[/tex]

Now, the required function is

[tex]f(x)=12.7799(1.32855)^x[/tex]

Putting x=12, we get

[tex]f(12)=12.7799(1.32855)^{12}[/tex]

[tex]f(12)=386.4224[/tex]

[tex]f(12)\approx 386.422[/tex]

Therefore, the value of f(12) is 386.422.