Given the system of constraints name all vertices. Then find the maximum value of the given objective
x≥0
y≥0
y≤ 1/3x+1
5≥y+x
Objective function C = 7x-2y​

Respuesta :

Answer:

[tex]35[/tex]

Step-by-step explanation:

The constraints are

The red line represents the function

[tex]y\leq \dfrac{1}{3}x+1[/tex]

At [tex]y=0[/tex]

[tex]0=\dfrac{1}{3}x+1\\\Rightarrow -1=\dfrac{1}{3}x\\\Rightarrow x=-3[/tex]

At [tex]x=0[/tex]

[tex]y=0+1\\\Rightarrow y=1[/tex]

Two points are [tex](-3,0),(0,1)[/tex]

The blue line represents the function

[tex]5\geq y+x[/tex]

at [tex]y=0[/tex]

[tex]5=x[/tex]

at [tex]x=0[/tex]

[tex]y=5[/tex]

Two points are [tex](5,0),(0,5)[/tex]

The other two constraints are [tex]x\geq 0[/tex], [tex]y\geq 0[/tex]. So, the point has to be in the first quadrant

From the graph it can be seen there are two points where the function will be maximum let us check them.

[tex](3,2)[/tex]

[tex]7x-2y=7\times 3-2\times 2=17[/tex]

[tex](5,0)[/tex]

[tex]7x-2y=7\times 5-2\times 0=35[/tex]

So, the maximum value of the function is [tex]35[/tex].

Ver imagen boffeemadrid