Respuesta :

Answer:

[tex]t = -7\ \ \ or\ \ t = 10[/tex]

Step-by-step explanation:

Given

[tex]f(t) = 2t^2 - 6t[/tex]

Required

Find t, when [tex]f(t) = 140[/tex]

Substitute 140 for f(t) in [tex]f(t) = 2t^2 - 6t[/tex]

[tex]140 = 2t^2 - 6t[/tex]

Divide through by 2

[tex]\frac{140}{2} = \frac{2t^2 - 6t}{2}[/tex]

[tex]70 = t^2 - 3t[/tex]

[tex]t^2 - 3t = 70[/tex]

Subtract 70 from both sides

[tex]t^2 - 3t - 70= 70 - 70[/tex]

[tex]t^2 - 3t - 70= 0[/tex]

Expand

[tex]t^2 -10t + 7t - 70 = 0[/tex]

Factorize:

[tex]t(t - 10) + 7(t - 10) = 0[/tex]

[tex](t + 7)(t - 10) = 0[/tex]

Split:

[tex]t + 7 = 0\ \ \ or\ \ t - 10 = 0[/tex]

[tex]t = -7\ \ \ or\ \ t = 10[/tex]

Hence, the values of t are -7 and 10