Respuesta :

Answer:

[tex]1.\ x = 5\ in[/tex]

[tex]2.\ x = 5\ mi[/tex]

[tex]3.\ x = 8.6\ km[/tex]

[tex]4.\ x= 14.1\ mi[/tex]

Step-by-step explanation:

Given

See attachment for triangles

Required

Determine the missing sides

All 4 triangles are right-angled. So, to calculate the missing sides, we apply Pythagoras theorem which states that:

[tex]Hyp^2 = Adj^2 + Opp^2[/tex]

Solving (1):

[tex]Hypotenuse = 13[/tex]

So, we have:

[tex]13^2 = 12^2 + x^2[/tex]

[tex]169 = 144 + x^2[/tex]

Make [tex]x^2[/tex] the subject

[tex]x^2 = 169 - 144[/tex]

[tex]x^2 = 25[/tex]

Take positive square root of both sides

[tex]x = \sqrt{25[/tex]

[tex]x = 5\ in[/tex]

Solving (2):

[tex]Hypotenuse = x[/tex]

So, we have:

[tex]x^2 = 4^2 + 3^2[/tex]

[tex]x^2 = 16 + 9[/tex]

[tex]x^2 = 25[/tex]

Take positive square root of both sides

[tex]x = \sqrt{25[/tex]

[tex]x = 5\ mi[/tex]

Solving (3):

[tex]Hypotenuse = 14.7[/tex]

So, we have:

[tex]14.7^2 = x^2 + 11.9^2[/tex]

[tex]216.09 = x^2 + 141.61[/tex]

Make [tex]x^2[/tex] the subject

[tex]x^2 = 216.09 - 141.61[/tex]

[tex]x^2 = 74.48[/tex]

Take positive square root of both sides

[tex]x = \sqrt{74.48[/tex]

[tex]x = 8.6\ km[/tex]

Solving (4):

[tex]Hypotenuse = 15.4[/tex]

So, we have:

[tex]15.4^2 = x^2 + 6.3^2[/tex]

[tex]237.16 = x^2 + 39.69[/tex]

Make [tex]x^2[/tex] the subject

[tex]x^2= 237.16 - 39.69[/tex]

[tex]x^2= 197.47[/tex]

Take positive square root of both sides

[tex]x= \sqrt{197.47[/tex]

[tex]x= 14.1\ mi[/tex]

Ver imagen MrRoyal