Determine the values of the unlabeled parts of the triangle.

OA) ZQ = 63.4°, PQ = 1.84, QO = 4.47

OB) ZQ = 26.6°, PQ = 2, QO = 5.12

OC) ZQ = 63.4º, PQ = 2, QO = 4.47

D)

ZQ = 63.4°, PQ = 1.84, QO = 5.12

Respuesta :

Answer:

∠Q = 63.4º, PQ = 2, QO = 4.47

Step-by-step explanation:

A triangle is a polygon with three sides and three angles. There are different types of triangles such as the equilateral triangle, isosceles triangle, scalene triangle, right angled triangle.

Triangle POQ is a right angled triangle because ∠P = 90°. Also, ∠O = 26.6°.

Therefore in ΔPOQ: ∠P + ∠O + ∠Q = 180° (sum of angles in a triangle).

90 + 26.6 + ∠Q = 180

∠Q + 116.6 = 180

∠Q = 180 - 116

∠Q = 63.4°

We can find PQ and QO using sine rule. Sine rule for ΔPOQ is given as:

[tex]\frac{PO}{sin Q}= \frac{PQ}{sinO}= \frac{QO}{sin P}\\\\Finding\ PQ :\\\\\frac{PO}{sin Q}= \frac{PQ}{sinO}\\\\\frac{4}{sin(63.4)} =\frac{PQ}{sin(26.6)}\\\\PQ= \frac{4}{sin(63.4)} *sin(26.6)\\\\PQ = 2\\\\Also\ finding\ QO:\\\\\frac{PO}{sin Q}= \frac{QO}{sinP}\\\\\frac{4}{sin(63.4)} =\frac{QO}{sin(90)}\\\\QO=\frac{4}{sin(63.4)} *sin(90)\\\\QO = 4.47[/tex]

Ver imagen raphealnwobi