An ice skater with rotational inertia I0 is spinning with angular speed omega subscript 0. She pulls her arms in, thereby increasing her angular speed to 4 omega subscript 0 . Her rotational inertia is then: a. 2 I0 b. I0 c. I0 /2 d. I0 /4 e. 4 I0

Respuesta :

Answer:

d. I0 /4

Explanation:

Given that:

Initial angular velocity of the skater = [tex]\omega_o[/tex]

After pulling arms, angular velocity changes to = [tex]4 \omega _o[/tex]

Provided that no external torque is acting on skater;

Then:

[tex]\tau _{ext} = 0[/tex]

The torque [tex]\tau_{ext} = \dfrac{dL}{dt}[/tex]

where;

[tex]\tau _{ext} = 0[/tex]

It implies that:

[tex]\dfrac{dL}{dt} =0[/tex]

where;

L = constant

[tex]L_{initial} = L_{final}[/tex]

So;

[tex]I_i\omega_i = I_f \omega _f[/tex]

[tex]I_f =\dfrac{I_i\omega_i}{ \omega _f}[/tex]

[tex]I_f =\dfrac{I_o\omega_o}{ 4\omega _o}[/tex]

[tex]\mathbf{ I_f =\dfrac{I_o}{ 4}}[/tex]