Answer:
[tex]11\dfrac{13}{25}\pi[/tex]
Step-by-step explanation:
r = Radius of semicircle = [tex]2\dfrac{4}{5}=\dfrac{24}{5}\ \text{units}[/tex]
Area of semicircle is given by
[tex]A=\dfrac{\pi r^2}{2}\\\Rightarrow A=\dfrac{\pi \left(\dfrac{24}{5}\right)^2}{2}\\\Rightarrow A=\dfrac{288}{25}\pi=11\dfrac{13}{25}\pi\ \text{sq. units}[/tex]
The area of the semicircle is [tex]11\dfrac{13}{25}\pi\ \text{sq. units}[/tex].