Respuesta :

Space

Answer:

x = 3√10

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtract Property of Equality

Trigonometry

[Right Triangles Only] Pythagorean Theorem: a² + b² = c²

  • a is a leg
  • b is another leg
  • c is the hypotenuse

Step-by-step explanation:

Step 1: Identify Variables

Leg a = 9

Leg b = 3

Hypotenuse c = x

Step 2: Solve for x

  1. Substitute [PT]:                    9² + 3² = x²
  2. Rearrange:                           x² = 9² + 3²
  3. Exponents:                          x² = 81 + 9
  4. Add:                                     x² = 90
  5. Isolate x:                              x = 3√10

To find the value of x we can apply Pythagoras theorem in this right angled triangle.

‎ ‎ ‎ ‎ ‎ ‎

So let's apply!

[tex]{ \boxed{ \sf{ \mapsto {Hypotenuse}^{2} ={Base }^{2} +{Perpendicular }^{2} }}}[/tex]

[tex] \sf{ : \implies {x}^{2} = {9}^{2} + {3}^{2} }[/tex]

[tex] \sf{ : \implies {x}^{2} = 81 + 9 }[/tex]

[tex] \sf{ : \implies {x}^{2} = 90 }[/tex]

[tex] \sf{ : \implies {x} = \sqrt{2 \times 3 \times 3 \times 5} }[/tex]

[tex] \sf{ : \implies {x} = 3 \sqrt{10} }[/tex]

Hence this is the value of x.