Respuesta :

Answer/Step-by-step explanation:

Given:

[tex] \frac{4}{x} - \frac{3}{y} = 1 [/tex] ---› Equation 1

[tex] \frac{8}{x} + \frac{9}{y} = 7 [/tex] ---› Equation 2

Solution:

✔️Equation 1 × 3:

[tex] \frac{4}{x}*3 + \frac{3}{y}*3 = 1*3 [/tex]

[tex] \frac{12}{x} + \frac{9}{y} = 3 [/tex] ---› Equation 3.

✔️Equation 2 + Equation 3:

[tex] \frac{8}{x} + \frac{9}{y} = 7 [/tex] ---› Equation 2

[tex] \frac{12}{x} + \frac{9}{y} = 3 [/tex] ---› Equation 3.

Thus:

[tex] \frac{-4}{x} = 10 [/tex]

Cross multiply

[tex] 10x = -4 [/tex]

Divide both sides by 10

[tex] x = -\frac{4}{10} [/tex]

[tex] x = -\frac{2}{5} [/tex]

✔️Find y:

Substitute x = -2/5 into equation 1

[tex] \frac{4}{x} - \frac{3}{y} = 1 [/tex] ---› Equation 1

[tex] \frac{4}{\frac{-2}{5}} - \frac{3}{y} = 1 [/tex]

[tex] \frac{4}*{\frac{5}{-2}} - \frac{3}{y} = 1 [/tex]

[tex] -10 - \frac{3}{y} = 1 [/tex]

Add 10 to both sides

[tex] - \frac{3}{y} = 1 + 10 [/tex]

[tex] \frac{-3}{y} = 11 [/tex]

Cross multiply

[tex] 11y = -3 [/tex]

Divide both sides by 11

[tex] y = -\frac{3}{11} [/tex]