Respuesta :

Given:

The expression is

[tex]81x^4-1[/tex]

To find:

The factorized form of given expression.

Solution:

We have,

[tex]81x^4-1[/tex]

It can be rewritten as

[tex]=3^4x^4-1^2[/tex]

[tex]=(3x)^4-1^2[/tex]              [tex][\because a^xb^x=(ab)^x][/tex]

[tex]=((3x)^2-1)((3x)^2+1)[/tex]              [tex][\because a^2-b^2=(a-b)(a+b)][/tex]

[tex]=(3x+1)(3x-1)(3x+1)(3x-1)[/tex]              [tex][\because a^2-b^2=(a-b)(a+b)][/tex]

This is the complete factorized form. It can also written as

[tex]=(3x+1)^2(3x-1)^2[/tex]

Therefore, the complete factorized form is [tex](3x+1)(3x-1)(3x+1)(3x-1)[/tex].