Respuesta :

Given:

In an isosceles triangle,

One base angle = (4x-15)°

Vertex angle = 95°

To find:

The value of x.

Solution:

Let the triangle be ABC.

We have,

[tex]m\angle A=95^\circ[/tex]

[tex]m\angle C=(4x-15)^\circ[/tex]

Since ABC is an isosceles triangle and AB=AC, therefore, the base angles are equal.

[tex]m\angle B=m\angle C=(4x-15)^\circ[/tex]

Using angle sum property of triangles, we get

[tex]m\angle A+m\angle B+\angle C=180^\circ[/tex]

[tex]95^\circ+(4x-15)^\circ+(4x-15)^\circ=180^\circ[/tex]

[tex](8x+65)^\circ=180^\circ[/tex]

[tex](8x+65)=180[/tex]

On further simplification, we get

[tex]8x=180-65[/tex]

[tex]8x=115[/tex]

[tex]x=\dfrac{115}{8}[/tex]

[tex]x=14.375[/tex]

Therefore, the value of x is 14.375.

Ver imagen erinna