Respuesta :

Answer:

B. 21.2

Step-by-step explanation:

Perimeter of ∆ABC = AB + BC + AC

A(-4, 1)

B(-2, 3)

C(3, -4)

✔️Distance between A(-4, 1) and B(-2, 3):

[tex] AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} [/tex]

[tex] AB = \sqrt{(-2 - (-4))^2 + (3 - 1)^2} = \sqrt{(2)^2 + (2)^2)} [/tex]

[tex] AB = \sqrt{4 + 4} [/tex]

[tex] AB = \sqrt{16} [/tex]

AB = 4 units

✔️Distance between B(-2, 3) and C(3, -4):

[tex] BC = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} [/tex]

[tex] BC = \sqrt{(3 - (-2))^2 + (-4 - 3)^2} = \sqrt{(5)^2 + (-7)^2)} [/tex]

[tex] BC = \sqrt{25 + 49} [/tex]

[tex] BC = \sqrt{74} [/tex]

BC = 8.6 units (nearest tenth)

✔️Distance between A(-4, 1) and C(3, -4):

[tex] AC = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} [/tex]

[tex] AC = \sqrt{(3 - (-4))^2 + (-4 - 1)^2} = \sqrt{(7)^2 + (-5)^2)} [/tex]

[tex] AC = \sqrt{47 + 25} [/tex]

[tex] AC = \sqrt{74} [/tex]

AC = 8.6 units (nearest tenth)

Perimeter of ∆ABC = 4 + 8.6 + 8.6 = 21.2 units

Answer:

A, 20.0

Step-by-step explanation: